Small Business Innovation Research/Small Business Tech Transfer

A Green, Safe, Dual-Pulse Solid Motor for CubeSat Orbit Changing, Phase I

Completed Technology Project (2014 - 2014)

Project Introduction

Small satellites such as CubeSats are in need of responsive propulsion, but are limited due to their size. Though single pulse, AP/HTPB fueled solid rocket motors exist in the market, greater mission flexibility is to be had from a motor with the capability of a second ignition in the same volume constraints. Digital Solid State Propulsion (DSSP) proposes research into the technology to not only to enable a second pulse from a high thrust solid rocket motor, but also into a safer class of propellants called Electric Solid Propellants (ESPs). A barrier system, developed on other DSSP programs, would be the stepping stone for the dual pulse ability of the motor. The ESPs are a group of propellants that are electrically ignited, but safer to handle compared to standard solid energetic propellants. For in-space use, Aluminized variant of ESP would be improved and utilized for this application. Phase I funding would allow for the advancements of these technologies to a TRL 3. Then following basic research and design goals of a Phase I contract, a Phase II contract would allow the design and test of an integrated Delta-V and ACS propulsion into a 1U module at TRL 6.

Primary U.S. Work Locations and Key Partners

A Green, Safe, Dual-pulse Solid Motor for CubeSat Orbit Changing Project Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

A Green, Safe, Dual-Pulse Solid Motor for CubeSat Orbit Changing, Phase I

Completed Technology Project (2014 - 2014)

Organizations Performing Work	Role	Туре	Location
Digital Solid State	Lead	Industry	Reno,
Propulsion Inc.(DSSP)	Organization		Nevada
Marshall Space Flight	Supporting	NASA	Huntsville,
Center(MSFC)	Organization	Center	Alabama

Primary U.S. Work Locations	
Alabama	Nevada

Project Transitions

0

June 2014: Project Start

December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140745)

Images

Project Image

A Green, Safe, Dual-pulse Solid Motor for CubeSat Orbit Changing Project Image (https://techport.nasa.gov/imag e/133370)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Digital Solid State Propulsion Inc. (DSSP)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Tim Manship

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

A Green, Safe, Dual-Pulse Solid Motor for CubeSat Orbit Changing, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

